NCCQroup”

freedom from doubt

Sakula DLL planting analysis
David Cannings

April 2016

Contents

1 Handling information

Introduction
21 Analysedsample e

2.2 Thanks L e e

Understanding the chain of execution

3.1 OVEIVIEW e e e e e e

Dropper executable

4.1 Identifying the XOR encoding function
4.2 Extractingthefiles L e
4.3 Extracting & decoding thefiles
4.4 Embeddedfiles L
4.5 Anti-sandbox checks L

4.6 Selfdeletion e

s.exe /| MediaSoft.exe (Kaspersky installer)
5.1 OVervIeW e e e e e e
5.2 Vulnerablecode e

5.3 Authenticode signature L

msi.dll (planted DLL)

6.1 Stringobfuscation L L

6.2 Decode andcalltoshellcode e

6.3 Breakingonload L
6.3.1 UsingWinDbg
6.3.2 Verifyingthe module hasloaded

6.3.3 Examining how D11EntryPoint()iscalled

10
10
10
10

Sakula DLL planting analysis

7

10

11

12

13

14

6.4 Decodingsetup.msi
6.4.1 Breaking beforedecode
6.4.2 Inspecting shellcode memory permissions
6.4.3 Examining memory - beforedecode
6.4.4 Examining memory - afterdecode

6.4.5 Dumping shellcode memoryregion

setup.msi (injected shellcode & implant)

7.1 OvVerview e
7.2 Locatingkernel32o
7.3 Positionindependence tricko Lo

7.4 Importresolution Lo

Embedded implant

8.1 Theimplant

8.2 Decoding configuration L

Signatures

Curiosities

10.1 Signingonmsi.dll

10.2 GetCursorPos structure clearing

Similar files

1M Sakulao
11.20ther L
1121 Group 1-PlugX
1122 Group 2-PlugX

1123 Group3-Maudi

Useful breakpoints

12.1 Kaspersky executableo
122msi.dll . ..o

123 Shellcode

Changes

Contact details

v1.1 TLP WHITE

nccgroup®

freedorn from doubt

20

................. 20
................. 20

21

23

................. 23
................. 27

31

nccgroup®

Sakula DLL planting analysis freedom from doubt

1 Handling information

This document was produced by the NCC Group Cyber Defence Operations team. The content of this document should
be considered proprietary information. NCC Group has released this report publicly and gives permission to copy it at TLP
WHITE. Please see the US CERT website for full details of the traffic light marking system.

2 Introduction

This technical note discusses a version of Sakula uploaded to VirusTotal on the 25th April 2016. The sample initially looked
interesting as it uses a signed Kaspersky binary to load itself, presumably to avoid UAC.

Further research online shows that usage of this technique by Sakula has previously been documented. A good detailed
report is available from SecureWorks' covering the evolution of Sakula and the usage of signed executables (both legitimate
binaries and stolen code signing certificates).

In the sample analysed the main implant is never saved to disk as an executable, a common technique used by malware in
the last few years. The small size of this dropper and minimum amount of obfuscation make it an excellent sample to practise
analysis. Therefore this technical note discusses one method which can be used to extract the Sakula implant from memory.

The overall aims are to:

» Extract the implant from memory after it has been decoded (enabling further analysis).
» Understand key sections of the overall chain of execution.

The following steps are discussed:

« Identifying a decoding routine and reimplementing it in Python.
» Using WinDbg to analyse code in a DLLEntryPoint function.
» Dumping memory using WinDbg for further analysis.

The techniques used are valid for any program which conducts unpacks and executes itself in memory.

21 Analysed sample

The sample analysed2 was uploaded to VirusTotal on the 25th April 2016, no original filename information was available.
Almost identical binaries exist on VirusTotal from throughout 2014 and 2015, a list of similar samples is provided at the end
of the document.

The file is not digitally signed and has no resources, therefore no icon. It hit on a number of custom Sakula signatures
which are provided in section 9. Specific detections by anti-virus products include Backdoor.Win32.Mivast.o (Kaspersky) and
Trojan/Win32.Sakelua (AhnLab). Microsoft link it to Trojan:Win32/Derusbi.Aldha.

A number of other files use the vulnerable Kaspersky installer in exactly the same way, including PlugX and Maudi. See
section 11 for more information.

2.2 Thanks

Thanks to Cedric Halbronn for technical assistance and review during the creation of this document.
Thanks to Marc Ochsenmeier (@ochsenmeier®) for clarifying why the Kaspersky executable attempts to load msi.d11 twice.

Whilst writing this document the website windbg.info* was very useful.

"https://www.secureworks.com/research/sakula-malware-family

2SHA256: db8867508b131a2c66873a1c70a5cc82102576227a1 Taebd f42 f72606d84b535
3https://twitter.com/ochsenmeier

“http://windbg.info/

v1.1 TLP WHITE 3

https://www.secureworks.com/research/sakula-malware-family
https://twitter.com/ochsenmeier
http://windbg.info/

nccgroup®

Sakula DLL planting analysis fieedorn from doubt

3 Understanding the chain of execution

3.1 Overview

A graphical overview of the steps taken by this malware is shown in figure 1. Items coloured green are saved to disk, items
coloured blue only exist in memory.

| Dropper executable (no name) |

Saves to disk Runs

Mediasoft.exe (also s.exe) .
Saves to disk

Loads Saves to disk
Decodes
setup.msi

Runs

Contains

Shellcode (PE loader)

Contains

Sakula implant

Figure 1: Overview of the files analysed in this technical note

This technical note is designed to be read in conjunction with the IDA databases, available separately.

v1.1 TLP WHITE 4

nccgroup®

Sakula DLL planting analysis freedom from doubt

4 Dropper executable

The first executable is a dropper containing three other files which are saved to disk. All functions are called directly from
WinMain(), the overall steps are:

» Opens itself for read access using sub_401034.

* Locates all three embedded files by looking for 8 byte markers using sub_401000.
+ Conducts a basic anti-sandbox check inWinMain().

+ Decodes two of the embedded files with XOR using sub_4011CC.

* Locates #TEMP?% and saves three files: s.exe,msi.dll and setup.msi.

+ Executes s.exe inWinMain().

* Deletes itself using a common trick with ping in sub_401154.

Now we know the data is embedded inside the executable it is necessary to identify the encoding mechanism.

4.1 Identifying the XOR encoding function

In a small executable it is possible to identify the XOR routine quickly by hand. The conditions to look for are an XOR instruction
in a loop where at least one of the operands is loaded from memory.

An automated alternative is to use the “interesting XOR”® IDA script from Jason Jones, which returns:

Interesting in XorDecode XOR al 68h @ ©x4011E6
Interesting XOR in a loop XorDecode @ 4011E6G: xor al, 68h

In this case it is exactly right, a manual review of the whole function is shown below. This is XOR with a fixed key of 0x68 (the
character h) but null bytes and bytes equal to the key are never encoded.

.text:004011CC XorDecode proc near ; CODE XREF: WinMain(x,x,x,x)+1EB
.text:004011CC ; WinMain(x,x,x,x)+1F8
.text:004011CC

.text:004011CC 1pBuffer
.text:004011CC dwLength
.text:004011CC

.text:004011CC push ebp

dword ptr 8
dword ptr @Ch

.text:004011CD mov ebp, esp ; Standard function prologue

.text :004011CF XOor edx, edx

.text:004011D1 cmp [ebp+dwLength], edx ; Is the length @7

.text:004011D4 jle short end ; Nothing to do, skip to end
.text:004011D6

.text:004011D6 loop: ; CODE XREF: XorDecode+22
.text :004011D6 mov eax, [ebp+lpBuffer]

.text:004011D9 lea ecx, [edx+eax] ; Get address of current byte
.text:004011DC mov al, [ecx] ; Load current byte into AL

.text:004011DE test al, al ; Is the current byte null (9x00)?
.text:004011E0Q jz short next

.text :004011E2 cmp al, 68h ; Does the current byte == the key (0x68)?
.text:004011E4 jz short next

.text:004011E6 Xor al, 68h ; XOR data byte with the key
.text:004011E8 mov [ecx], al ; Move the decoded byte back into the buffer
.text:004011EA

.text:004011EA next: ; CODE XREF: XorDecode+14

Shttps://github.com/arbor-jjones/idataco/blob/master/idataco/widgets/interesting_xor.py

v1.1 TLP WHITE 5

nccgroup”

Sakula DLL planting analysis freedorn from doubt
.text:004011EA ; XorDecode+18

.text:004011EA inc edx ; Increment counter (i++)

.text:004011EB cmp edx, [ebp+dwLength] ; Compare counter and length
.text:004011EE jl short loop ; Keep going until counter == length
.text:004011F0

.text:004011FQ end: ; CODE XREF: XorDecode+8
.text:004011F0 pop ebp ; Standard function epilogue

.text:004011F1 retn
.text:004011F1
.text:004011F1 XorDecode endp

The assembly sequence shown above was the original detection mechanism for this binary. Itis used consistently throughout
a number of Sakula executables (with different key bytes) and therefore makes a good signature. Yara signatures are provided
toward the end of this technical note in section 9.

Calls to this function are shown below. There are two in the dropper executable, manually commented during analysis:

-
xrefs to XorDecode L@g

Direction Typ Address

. p WinMainixxxx)+1EB call XorDecode ; XOR decodethe Kaspersky executable
2] Da... p WinMainixxxx)+1F8 : XOR decode the planted msi.dll

call XorDecode

1| m [3

[QK J[Cancel][Search][Help]

Linel of 2

Figure 2: Cross-references to the XOR decode function

Now that we understand the above routine we can find the data and decode it manually.

4.2 Extracting the files

It is possible to execute the dropper and retrieve the three embedded files from %#TEMP?%. However to automate the process
we need to understand where they are located in the file.

Near the start of WinMain() there is a call to sub_401034 which opens the executable for read access using
GetModuleFileAameA() and CreateFileA(). The entire file is read into memory using ReadFile() and stored for
later use.

This buffer is then used immediately, three calls are made to sub_401000 which is named FindDataInBuffer below.

.text:00401247 push [esp+458h+dwFilelength]

.text:00401248B mov dl, 54h ; dl is now ©x54 == 'T'
.text:0040124D call FindDataInBuffer

.text: 00401252 push [esp+45Ch+dwFilelength]

.text 00401256 add dl, ©F8h ; dl is now 0x4C == 'L’
.text : 00401259 mov esi, eax

.text :0040125B call FindDataInBuffer

.text: 00401260 push [esp+460h+dwFilelength]

.text :00401264 mov dl, 45h ; dl is now 0x45 == 'E'
.text: 00401266 mov ebx, eax

.text:00401268 call FindDataInBuffer

v1.1 TLP WHITE 6

nccgroup®

Sakula DLL planting analysis fieedorn frorn doubt

This function looks for the same byte repeated 8 times consecutively in a buffer. The function is annotated in the IDA database
(available from Github), a rough equivalent in C is shown below:

LPBYTE FindDatalnBuffer(LPBYTE buf, DWORD dwLength, char marker) {
DWORD i = 0;
DWORD j = 0;

while (i < dwLength) {
if (buf[i] == marker) {
// Note the code starts with j equal to zero, but
// would be more efficient if it was 1 :)

Jj=09;
while (j < 8 && buf[i+j] == marker) {
J++;
}
if (j == 8) return (LPBYTE)(buf+i);
}
i++;
}
return 0;

With the knowledge that a string like TTTTTTTT should be in the file it is possible to find it using a hex editor:

00009880: 5454 5454 5454 5454 ddO1 6ddb d9da ©b64 TTTTTTTT..m....d

00009890 : 9860 ab89 VLV eB2a a9c8 06O 9bOV VRO .~ oo
000098a0: ©b48 8cd8 6019 8a00 VOb9 48c8 d2d1 d341 .H.. H....A
000P98bA: 4a84 ©0dd ©16d d903 c580 603e 8000 V089 J....m.... >....
000098cO: 4930 0Va8 c800 al149 0140 d141 4a8c ©@dd I@..... I1.@.AJ. ..
000098d0: ©16d d903 c580 6012 8000 Q89 4930 7390 .m.... 10s.
000098e0: c800 al149 0140 d141 4a8c 00dd ©16d b948 ...I.@.AJ....m.H

Immediately following the TTTTTTTT marker is the encoded file data, which can now be automatically extracted and decoded.

4.3 Extracting & decoding the files

In most cases it should be possible to run the dropper in a virtual machine to safely extract the files. Where this isn’t desirable
(or to automate mass extraction) a script can be written. The required steps are:

+ Identifies the correct XOR key byte, in case it changes.
» Scans the file for all markers (e.g. TTTTTTTT) and stores their location.
» Extracts each chunk of data and decodes with XOR.

A sample Python implementation of the decode routine could be:

def xor(data, key):
" Standard non-null, non-key XOR """

out =

v1.1 TLP WHITE 7

nccgroup®

Sakula DLL planting analysis freedom from doubt

for ¢ in data:
if ord(c) != 0 and ¢ != key:
¢ = chr(ord(c) ~ ord(key))

out += ¢

return out

A full Python script that extracts the embedded files automatically is provided separately.

4.4 Embedded files

The files contained in the dropper are summarised in the table below.

SHA256 Marker Name

83f40eT70eal3bale614d0811070dafeT75092660003b8al f8b563d4f5b012f4bae EEEEEEEE s.exe
22130384212a599c843ad7559¢ faabb2a32488774acd5982c0bb4ab234580c8a8 LLLLLLLL msi.dll
T£5e2£6d56fcal1d4e6006e375027d4ebc72c5bafbcf10aa98f00e9368b98ddb TTTTTTTT setup.msi

4.5 Anti-sandbox checks
The executable attempts anti-sandbox techniques by checking that the mouse pointer has moved in both the X and the Y

directions. It does this by obtaining the location of the mouse pointer at the start of WinMain() using GetCursorPos()
and storing the position in a local variable.

The code which obtains the first mouse position is shown below:

.text:004011FE and [esp+44Ch+0OriginalMouselocation.x], @ ; Set X position to ©
; Some unrelated instructions skipped
.text :0040120A mov esi, ds:GetCursorPos

; Some unrelated instructions skipped

.text:00401211 Xor eax, eax

.text 00401213 lea edi, [esp+458h+OriginalMouselocation.y]
.text:00401217 stosd ; Set Y position to @

.text: 00401217 ;

.text:00401217 ; stosd will store @ from eax
.text:00401217 ; into memory location in edi
.text:00401218 Jjmp short GetInitialCursorPos

.text:0040121A

.text:0040121A Wait:

.text:0040121A push 1 ; dwMilliseconds
.text:0040121C call ds:Sleep

.text:00401222

.text:00401222 GetlInitialCursorPos:

.text: 00401222 lea eax, [esp+458h+0riginalMouselocation]
.text 00401226 push eax ; 1pPoint

.text: 00401227 call esi ; GetCursorPos

.text: 00401229 test eax, eax

.text :0040122B jz short Wait

v1.1 TLP WHITE 8

nccgroup®

Sakula DLL planting analysis freedom from doubt

Later in WinMain() the mouse location is obtained again. The original and updated values are compared to ensure that
both X and Y coordinates have changed, as seen below.

.text:004013A6 WaitForMouseMove: ; CODE XREF: WinMain(x,x,x,x)+1E1
.text :004013A6 mov esi, ds:GetCursorPos

.text :004013AC jmp short CheckMouseAgain

.text :004013AE

.text :004013AE Sleep: ; CODE XREF: WinMain(x,x,x,x)+1CD
.text:004013AE push 1 ; dwMilliseconds

.text :004013B0 call ds:Sleep

.text :004013B6

.text:004013B6 CheckMouseAgain: ; CODE XREF: WinMain(x,x,x,x)+1BA
.text:004013B6 lea eax, [esp+458h+UpdatedMouselocation] ; CheckMouseAgain
.text:004013BA push eax ; 1pPoint

.text:004013BB call esi ; GetCursorPos

.text:004013BD test eax, eax

.text :004013BF jz short Sleep

.text:004013C1

.text:004013C1 CheckPosX: ; Check the mouse has moved in the X
.text:004013C1 ; direction (left to right)
.text:004013C1 mov eax, [esp+458h+UpdatedMouselocation.x]

.text:004013C5 cmp eax, [esp+458h+0OriginalMouselocation.x]

.text:004013C9O jnz short MouseHasMoved

.text:004013CB

.text:004013CB CheckPosY: ; Check the mouse has moved in the Y
.text:004013CB ; direction (up and down)
.text:004013CB mov eax, [esp+458h+UpdatedMouselocation.y]

.text:004013CF cmp eax, [esp+458h+0OriginalMouselocation.y]

.text :004013D3 jz short WaitForMouseMove

4.6 Self deletion

The final action taken is to delete itself from disk. The dropper does this by:

+ Calling GetModuleFileNameA() to retrieve the executable name.
* Running the ping utility to get a short delay, followed by del.
» Exiting the process immediately afterward (an executable cannot be deleted whilst running).

The final command looks like below, the command string is visible in the dropper (%s is replaced with the file name using
sprintf).

cmd.exe /c ping 127.0.0.1 & del /q \"Z%s\"

v1.1 TLP WHITE 9

nccgroup®

Sakula DLL planting analysis fieedorn from doubt

5 s.exe/MediaSoft.exe (Kaspersky installer)

5.1 Overview
This program is named “lNporpamma yctaHoBkn AHTuBMpYyca Kacnepckoro 6.0 ans Windows Workstations” or “Setup Kasper-
sky Anti-Virus 6.0 for Windows Workstations”. It is a genuine Kaspersky setup program and contains a valid code signature.

Load order vulnerabilities including DLL planting first received widespread publicity in 2010, information from code signing
and the PE header indicate this binary was written in 2008. There are a number of benefits to using a legitimate, signed
application in this way. The first is that UAC behaves differently for signed binaries, perhaps looking less suspicious to the
user. The second is that analysts are less likely to scrutinise a legitimate executable which has been signed by a reputable
company.

5.2 Vulnerable code

The DLL hijacking vulnerability is located in sub_401460, where msi.d11 is dynamically loaded with LoadLibraryA:

.text:0040146F push offset LibFileName ; "msi.dll"
.text:00401474 call ds:LoadlLibraryA

Microsoft provide information on the DLL search order® process used by Windows. The file msi.d11 is not on the list of
known DLLs’ therefore the copy in SWINDIR%\system32 is not automatically used.

Because of this vulnerability the Kaspersky installer will load the planted msi.dl1 from the same directory, running code
provided by the attacker. The call to LoadLibraryA above is sufficient to trigger the Sakula code, execution will never
return to the Kaspersky binary frommsi.dl1.

5.3 Authenticode signature

Signature details are verified by Windows as shown below.

Digital Signature Details m
General | advanced

— . Digital Signature Information
—
*f--'—/ This digital signature is CK.

Signer information

Mame: faspershy
E-mail: |N|:|t available
Signing time: | 06 August 2003 17:50:15

View Certificate

Figure 3: Kaspersky signed binary

8https://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx
THKLM\SYSTEM\CurrentControlSet\Control\Session Manager \KnownDLLs

v1.1 TLP WHITE 10

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx

nccgroup®

Sakula DLL planting analysis freedom from doubt

6 msi.dll (planted DLL)

Analysis in IDA Pro shows thatmsi .d11 only has two functions. The first is the D11EntryPoint () which contains nearly
all code. The second is identical in operation to the XOR decode function from the dropper but the key byte is provided as an
argument instead of being hard coded.

Static analysis shows thatmsi.dl1 takes the following steps to load shellcode from setup.msi:

* Obtains the full path tomsi.dl1 using GetModuleFileNameA

+ Searches from the end of the string backward for the first \ character (to get the directory).
» Appends setup.msi as seen above.

» Loads this file into memory and XOR decodes it.

» Calls the loaded code in memory.

6.1 String obfuscation

msi.dl1 contains some minor string obfuscation to build the filename setup . ms1i, shown below. No other anti-disassembly
or security product evasion is evident.

code:100010D push it

code:100010D3 push 'sm.p'

code:100010D8 push 'utes' ; String stacking
code :100010DD push esp ; Source

code : 100010DE push ds:1pFileName ; Dest
code:100010E4 call strcat

6.2 Decode and call to shellcode

Much of msi.dl1 is standard API calls to locate setup.msi and read it into memory. The final steps can be seen below,
decoding the buffer and calling eax:

code:1000115C push 88h ; XOR key byte
code:10001161 push [ebp+dwSize] ; Size of setup.msi
code:10001164 push [ebp+1pBuffer] ; Address of buffer
code: 10001167 call XorDecode

code:1000116C mov eax, [ebp+lpBuffer]

code :1000116F call eax ; Call decoded shellcode

Therefore to analyse this code further we must stop debugging before the call at address 100011 6F .

6.3 Breaking on load

The first challenge is breaking into the D11EntryPoint() code in msi.dl1 before it runs. The Kaspersky binary uses
LoadLibrary but the load of the DLL is done entirely by Windows. Stepping over the LoadLibrary call means that code
inthe D11EntryPoint function will be run automatically. Single stepping through all of LoadLibrary is tedious and time
consuming.

6.3.1 Using WinDbg

The easiest mechanism is to set an exception any time a module named msi is loaded using the WinDbg command sxe.
This command is explained on Riham Selim’s blog® at MSDN. Filters added in this way can be viewed or modified using the
menu option Debug >Event Filters.. ..

8https://blogs.msdn.microsoft.com/rihamselim/20‘12/03/14/breaking-on-module-load/

v1.1 TLP WHITE 11

https://blogs.msdn.microsoft.com/rihamselim/2012/03/14/breaking-on-module-load/

nccgroup®

Sakula DLL planting analysis freedomn from douo

Break when msi.dll is loaded
0:000> sxe 1d msi

Continue debugging

0:000> g

ModLoad: 7d1e@00@ 7d49c00@ C:\WINDOWS\system32\msi.dll

€ax=00000000 ebx=000000V ecx=PV8f0OO edx=Tc90e514 esi=00VVVYVV edi=00VVAO

eip=Tc90e514 esp=0012ef94 ebp=0012f088 iopl=0 nv up ei ng nz ac pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000296
ntdll!KiFastSystemCallRet:

T7c90e514 c3 ret

Continue debugging

0:000> g

ModLoad: 10000000 10005000 C:\Documents and Settings\User\Desktop\Sakula\msi.dll
eax=0012fb68 ebx=00000V ecx=6569736d edx=00VVYVOV esi=0CVYVYRA edi=0YVD

eip=Tc90e514 esp=0012ebad ebp=0012ec94 iopl=0 nv up ei ng nz ac pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00000296
ntdll!KiFastSystemCallRet:

Tc90eb14 ¢3 ret

There is an initial break for C: \WINDOWS\system32\msi.dl1l but the load fails (eax is null, no valid handle is re-
turned). This occurs because of the code in sub_402510 in the Kaspersky installer that loads msi.dl1l and obtains
the version number using D11GetVersion (note: this first call is safe because msi.dll is appended to the result of
GetSystemDirectoryA).

The second exception is for the planted malicious DLL and LoadlL ibrary returns a handle address of 0912 fb68 in eax.
In this case the load is unsafe because there is no explicit path, therefore the planted version from the application directory is
used.

6.3.2 Verifying the module has loaded

msi.dl1l has now been loaded into memory by Windows, this can be verified using 1m to list modules:

0:000> 1m

start end module name

00400000 0040bORD setup (deferred)
10000000 10005000 msi (no symbols)

. other modules omitted

Therefore msi.dl1 has been loaded at its preferred base address of 9x10000000 and functions will have the same ad-
dresses shown in IDA, making debugging easier. IDA suggests that D1 1EntryPoint() is located at 10001031, this can be
verified in WinDbg using the display headers extension ! dh:

0:000> !dh msi

File Type: DLL
FILE HEADER VALUES
14C machine (1386)
4 number of sections
53BD8OC2 time date stamp Wed Jul @9 19:49:54 2014

0 file pointer to symbol table

@ number of symbols
EQ size of optional header

v1.1 TLP WHITE 12

Sakula DLL planting analysis

210E characteristics

Execu
Line

table
numbers stripped

Symbols stripped

32 bi
DLL

t word machine

OPTIONAL HEADER VALUES

10B magic #

©.40 linker version

200 size of
600 size of
0 size of
1031 address
1000 base of

code

initialized data
uninitialized da
of entry point
code

————— new —————

10000000 image ba

. other headers

se

omitted

nccgroup®

freedorn from doubt

ta

This shows image base of 0x10000000 and address of entry point @x1031 . Therefore disassembling code at 9x10001031
should reveal the same code shown in IDA at the entry point:

0:000> u msi+1031
msi+0x1031:
10001031 89ff
10001033 55
10001034 89eb5
10001036 83ec4c
10001039 31c0O
1000103b 8b450c
1000103e 831001
10001041 831800

mov
push
mov
sub
XOr
mov
Xor
cmp

edi,edi

ebp

ebp,esp

esp, 4Ch

eax,eax

eax,dword ptr [ebp+@Ch]
eax,1

eax, 0

Correlating this code with IDA shows what we expect - the planted msi.dl1 has been loaded and is ready to run. We can
now break anywhere we choose in the msi module.

6.3.3 Examining how D11EntryPoint() is called

With msi loaded we can inspect the sequence of calls from LoadLibrary in the Kaspersky executable through to
Dl11EntryPoint inmsi by displaying a stack backtrace with k

0:000> k

ChildEBP RetAddr
0012eba® Tc91c4dfa
0012eca8 Tc916371
0012ef54 Tc9164d3
0012f1fc Tc801bbd
0012264 Tc801d72
0012278 Tc801da8
00121294 0040147a
0012fTc4 004036£5
0012ffc@ Tc81707T
0012fff0 00RO

v1.1

msi+0x1031
ntdll!LdrpRunlIn
ntdll!LdrpLoadD
ntdll!LdrLoadDl
kernel32!LoadlLi
kernel32!LoadlLi
kernel32!LoadlLi
setup+@x147a
setup+0x36£f5
kernel32!BasePr

itializeRoutines+0x344
11+0x3e5

1+0x230

braryExW+0x18e
braryExA+0x1f
braryA+0x94

ocessStart+0x23

TLP WHITE 13

nccgroup®

Sakula DLL planting analysis freedom from doubt

The calls lead to LdrpRunInitializeRoutines, an internal Windows routine responsible for calling the entry point of
executables or DLLs. More information is available in Matt Pietrek’s article® from the Microsoft Windows Journal.

This illustrates why execution never returns to the Kaspersky executable and why stopping in the D11EntryPoint is not as
simple as setting a normal breakpoint.

6.4 Decoding setup.msi

In the msi module the file setup.msi is loaded from disk and decoded using XOR (key byte @x88), as shown in section
6.2. Therefore we could decode setup.msi manually, but practise to analyse advanced encoding techniques is valuable.

The steps described below work whether simple string obfuscation or more complex encryption is used, as long as the right
functions and memory regions can be identified.

6.4.1 Breaking before decode

The first step is to break immediately before the XOR decode function call, located at @x10001167:

0:000> bp msi+1167
0:000> g
Breakpoint @ hit

€ax=00000001 ebx=10001031 ecx=0012eadd edx=7c90e514 esi=0012eb94 edi=00000001

eip=10001167 esp=0012eadc ebp=0012eb30 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b Jgs=0000 ef1=00000202
msi+0x1167:

10001167 e894feffff call msi+@x1000 (10001000) ; Call XOR decode
0:000> ub

msi+@x115c:

1000115¢c 6888000000 push 88h : Key byte

10001161 ff75f4 push dword ptr [ebp-0Ch] ; Length

10001164 ff75f8 push dword ptr [ebp-8] ; Buffer to decode
10001167 e894feffff call msi+0x1000 (10001000) ; We are here
1000116¢c 8b45f8 mov eax,dword ptr [ebp-8]

1000116f ffde call eax

10001171 6aff push OFFFFFFFFh

10001173 e8c41e0000 call msi+0x303c (1000303c)

By this point the file data is already in memory. A local variable holds a pointer to the data buffer, IDA names itebp+1pBuffer.
The value is located on the stack at ebp-8, seen pushed to the stack in the disassembly above.

This address can be inspected using the display pointer command (this adapts to 32-bit or 64-bit automatically):

0:000> dp ebp-8 L1
0012eb28 00380000

6.4.2 Inspecting shellcode memory permissions

The data to be decoded is therefore located at 9x380000, a memory region previously returned by VirtualAlloc. Per-
missions on the page can be confirmed with ! address, showing it has read/write/execute permissions:

9https://www.microsoft.com/msj/O999/hood/hood0999.aspx

v1.1 TLP WHITE 14

https://www.microsoft.com/msj/0999/hood/hood0999.aspx

nccgroup®

Sakula DLL planting analysis freedom from doubt

0:000> !'address 380000

Usage: <unclassified>

Allocation Base: 00380000

Base Address: 00380000

End Address: 00388000

Region Size: 008V

Type: 00020000 MEM_PRIVATE

State: 00001000 MEM_COMMIT

Protect: 000040 PAGE _EXECUTE_READWRITE

6.4.3 Examining memory - before decode

The contents of the memory region can now be examined. Rather than using the address directly it is easier to dereference
the pointer using poi (. .) in case memory locations change between runs.

0:000> db poi(ebp-8)

00380000 dd 01 6d db d9 da ©Ob 64-98 60 a6 89 00 00 e® 2a ..m....d. *
00380010 a9 c8 00 60 9b 00 00 00-0b 48 8c d8 60 19 8a 00 H.o. ...
00380020 0O b9 48 c8 d2 d1 d3 41-4a 84 00 dd 91 64 d9 @3 ..H....AJ....m..
00380030 c5 80 60 3e 80 00 VO 89-49 30 @0 a8 c8 V0 a1 49 .. >....I0..... I
00380040 ©1 40 d1 41 4a 8c 00 dd-01 6d d9 ©3 c5 80 60 12 .@.AJ....m.... .
00380050 80 00 0O 89 49 30 73 90-c8 00 a1 49 01 40 d1 41I0s....1.@.A
00380060 4a 8c 00 dd @1 6d b9 48-ec 29 b8 00 0@ Q0 @3 c8 J....m.H.)......
00380070 84 O3 c8 9c 03 00 03 00-03 c8 98 @1 6d d5 4b dd m.K.

This memory region matches the start of setup.msi exactly, confirming it is the right data.

6.4.4 Examining memory - after decode
We can now step one time (over the function call, not into it) and then examine the memory again.

0:000> p
. WinDbg steps over the XOR decode routine ..

0:000> db poi(ebp-8)

00380000 55 89 e5 53 51 52 83 ec-10 e8 2e 01 00 00 68 a2 U..SQR........ h.
00380010 21 40 Q0 e8 13 00 00 V0-83 cO 04 50 e8 91 02 O !@......... P....
00380020 ©0© 31 c@ 40 5a 59 5b c9-c2 Oc @0 55 89 e5 51 8b .1.@ZY[....U..Q.
00380030 4d 08 e8 b6 08 V0 VO O1-c1 b8 00 20 40 Q@ 29 c1 M.......... @.)
00380040 89 c8 59 c9 c2 04 00 55-89 e5 51 8b 4d 08 e8 92 ..Y....U..Q ..
00380050 08 00 V0 ©1 c1 b8 fb 18-40 V0 29 c1 89 ¢c8 59 c9 @.)...Y.
00380060 c2 04 Q0 55 89 e5 31 cO-64 al 30 V0 00 00 8b 40 ...U..1.d.0...
00380070 ©Oc 8b 40 14 8b 00 8b 0V-8b 40 10 89 e5 5d ¢c3 55 ..@...... @...].u

This shows how the data has changed. The next instruction calls address @x380000, therefore we expect it to be valid code.
This can be confirmed by disassembling it and checking the results look sane:

0:000> u poi(ebp-8)

00380000 55 push ebp
00380001 89e5 mov ebp, esp
00380003 53 push ebx
00380004 51 push ecx
00380005 52 push edx
00380006 83ec10 sub esp,10h
00380009 e82e010000 call 0038013c

v1.1 TLP WHITE 15

nccgroup®

Sakula DLL planting analysis freedom from doubt

This is valid code and appears to be a standard function prologue®.

6.4.5 Dumping shellcode memory region

The next step is to understand what this shellcode does. Dumping it from WinDbg for further analysis in IDA is possible using
the . writemem command:

0:000> .writemem "C:\\Out\\setup-msi-decoded.dat" poi(ebp-8)
Writing 10000 bytes................
Unable to read memory at 00388000, file is incomplete

The warning given by WinDbg does not affect our analysis because we want the entire memory region. An end address can
be supplied if desired but WinDbg will simply stop when an invalid location in memory is accessed.

The output file can now be loaded into IDA.

Onttp://stackoverflow.com/questions/14765406/function-prologue-and-epilogue-in-c

v1.1 TLP WHITE 16

http://stackoverflow.com/questions/14765406/function-prologue-and-epilogue-in-c

nccgroup®

Sakula DLL planting analysis freedom from doubt

7 setup.msi (injected shellcode & implant)

7.1 Overview

A few things are immediately visible in the decoded setup .msi file:

» The code appears to have been compiled from C rather than hand written (based on the quantity of code, standard
function prologue / epilogues and the calling conventions used).

» Some uninitialised data is at offset Ox8FF, preceded by AAAA.

» A list of API function names is at offset @x983, preceded by BBBB.

» There appears to be an embedded executable at offset @xAA1, preceded by CCCC.

» A custom PE loader is included to launch the embedded executable (strings ‘MZ’ and ‘PE’ around offset @x2B9 provide
a small clue here).

Static analysis in IDA indicates the injected shellcode takes the following steps:

» Finds kernel32.d11 in memory.

» Finds a number of ‘essential’ functions like VirtualProtect and LoadLibrary.

» Resolves the list of imports from offset 9x9883.

» Loads the embedded executable, including parsing relocations and processing the import table.
» Calls eax at offset @x3D1 to run the entry point of the embedded executable.

7.2 Locating kernel32

The standard code below is used to find kernel32 from the process environment block (PEB):

0:000> uf 380063
00380063 push ebp

00380064 mov ebp,esp

00380066 Xor eax,eax

00380068 mov eax,dword ptr fs:[00000030h] ; Get the PEB

0038006e mov eax,dword ptr [eax+@Ch] ; Get PEB_LDR_DATA

00380071 mov eax,dword ptr [eax+14h] ; In memory order module list
00380074 mov eax,dword ptr [eax] ; Skip one module (using flink)
00380076 mov eax,dword ptr [eax] ; Skip another module

00380078 mov eax,dword ptr [eax+10h] ; eax is now kernel32

0038007b mov ebp, esp

0038007d pop ebp

0038007Te ret

Note the usage of this technique means the code (which is 32-bit) will not work correctly on 64-bit versions of Windows, where
the standard module load order is different under WoW64.

7.3 Position independence trick

The following function appears right at the end of the shellcode to enable resolution of the variables in memory. These would
normally be located in an executable’s data section but this doesn’t exist for the loaded shellcode.

Therefore all variables are offset from the end of the shellcode. The following function finds the location of the end of the
shellcode by creating a dummy stack frame, saving the return address and adding 6 to skip over the remaining instructions.

v1.1 TLP WHITE 17

nccgroup®

Sakula DLL planting analysis freedomn from douo

$eg00:00YYR8ED FindEndOfShellcode proc near
segloo : 0OYRV8ED push ebp

Segloo : 0OVVS8EE mov ebp, esp

Segloo : 0OVV8FO call $+5 ; Dummy call to save eip on stack
Segllo : 0O8F S pop eax ; eax now points to shellcode base+8F5
Segllo : 0OY8F 6 add eax, 6 ; eax now points to shellcode base+8FB
Segloo : 0OV8F9 leave ; Remove dummy stack frame

Segloo : 0OYA8F A retn
segloo :0YRRV8FA FindEndOfShellcode endp

7.4 Import resolution

Imports required by the shellcode and PE loader are resolved using LoadL ibrary and then a manual walk of the export
table to find the named function. Import loading happens in the function at offset 9x236.

A list of function names and DLLs is provided at offset 9x983:

0:000> db 380983

00380983 47 65 T4 4d 6f 64 75 6c-65 46 69 6¢c 65 4e 61 6d GetModuleFileNam
00380993 65 41 00 43 T2 65 61 74-65 54 68 72 65 61 64 00 eA.CreateThread.
003809a3 53 6Cc 65 65 70 VO 47 65-74 50 72 6f 63 65 73 73 Sleep.GetProcess
003809b3 48 65 61 70 @O 47 65 T74-50 72 6f 63 41 64 64 72 Heap.GetProcAddr
003809c3 65 73 73 00 47 65 74 4d-6f 64 75 6c 65 48 61 6e ess.GetModuleHan
003809d3 64 6c 65 41 00 56 69 72-74 75 61 6c 41 6c 6c 6f dleA.VirtualAllo
003809e3 63 0B 56 69 T2 74 75 61-6c 50 72 6f 74 65 63 74 c.VirtualProtect
003809f3 0O 48 65 61 70 41 6¢c 6¢-6f 63 Q0 4c 6f 61 64 4c .HeapAlloc.lLoadL

Entries containing a dot . are treated as module names and passed to GetModuleHandleA (note this relies on the DLL
already being loaded). The function at offset @x7 f is used to walk the export table and locate entries using string comparison.

Pointers to each function are stored at offset @x8 f £, which initially starts empty:

0:000> dps 3808ff

003808ff LD
00380903 VO
00380907 0O

A complete list of resolved imports can be obtained when the function finishes with the dps command:

0:000> dps 3808ff

003808ff Tc80b56f kernel32!GetModuleFileNameA
00380903 T7c8106d7 kernel32!CreateThread
00380907 Tc802446 kernel32!Sleep

0038090b Tc8@ac6l1l kernel32!GetProcessHeap
0038090f Tc80aed® kernel32!GetProcAddress
00380913 Tc80bT741 kernel32!GetModuleHandleA
00380917 T7c8@9afl kernel32!VirtualAlloc
0038091b Tc801ad4 kernel32!VirtualProtect
0038091 f T7c8090f6 kernel32!HeapAlloc
00380923 T7c801dTb kernel32!LoadlLibraryA
00380927 Tc8lacTe kernel32!FreelLibrary
0038092b T7c809b84 kernel32!VirtualFree
0038092f Tc80910c kernel32!HeapFree
00380933 Tc809%eal kernel32!IsBadReadPtr
00380937 Te450Tea USER32!MessageBoxA

v1.1 TLP WHITE 18

nccgroup”

Sakula DLL planting analysis fieedorn from doubt

0038093b TTc2c407 msvert!malloc
0038093f TT7c475f0 msvcrt!memset
00380943 TTc2c21b msvert! free
00380947 TTc46£f70 msvcrt!memcpy
0038094b TT7c3f010 msvcrt! fopen
0038094f T7c411fb msvert! fread
00380953 TTc4@abl msvcrt! fclose
00380957 TTc4624e msvert!stricmp
0038095b TTc2c437 msvertl!realloc

This is the entire list of the Windows APIs required by the shellcode to load and execute the embedded implant executable.
The embedded implant has additional API requirements which are handled when the shellcode PE loader parses the import
table.

v1.1 TLP WHITE 19

nccgroup”

Sakula DLL planting analysis fieedorn from doubt

8 Embedded implant

8.1 The implant

The implant provides basic functionality to an adversary. This sample communicates using HTTP and an unusual user-agent
which claims to be a Media Center PC. Further information is available in two blog posts from Airbus Cyber Security (first'",
second’?).

Strings from the implant are visible in the executable in memory:

cmd.exe /c reg add %s\Software\Microsoft\Windows\CurrentVersion\Run
/v "%s" /t REG_SZ /d "%s"

HKLM

HKCU

SOFTWARE\Microsoft\Windows\CurrentVersion\Run\

cmd.exe /c ping 127.0.0.1 & del "%s" & del "%s%s" & del "%sks"
cmd.exe /c rundll32 "%s" ActiveQvaw "%s"

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0;
SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729;
Media Center PC 6.0)

*/ /%

HTTP/1 .1

POST

cmd.exe /c

cmd.exe /c "%s"

.exe

%d_%d_%d_%s

Self Process 1d:%d

8.2 Decoding configuration

Configuration for the Sakula implant is stored in the executable’s data section preceded by the marker hhhhhhhh. It is
encoded with XOR 0x56 in the same way as all other components (non-null, non-key).

When decoded manually the following strings are visible:

* \MicroSoftMedia (install directory)

* MediaSoft.exe (install file)

» 10615 (configuration location)

» %Temp% (install base)

* MicroSoftMedia (service install name)

* hxxp://180.210.206.246/photo/%s . jpg?id=%d (C2 location)

* hxxp://180.210.206.246/view.asp?cstring=%s&tom=%d&id=%d (C2 location)

Extraction of this configuration is automated by MICE"®, available on NCC Group’s labs site'*.

" http://blog.airbuscybersecurity.com/post/2015/09/APT-BlackVine-Malware-Sakula
12http://blog.airbuscybersecurity.com/post/2015/1 0/Malware-Sakula-Evolutions- (Part-2/2)
3https://labs.ncegroup.trust/mice

" https://labs.ncegroup.trust/

v1.1 TLP WHITE 20

http://blog.airbuscybersecurity.com/post/2015/09/APT-BlackVine-Malware-Sakula
http://blog.airbuscybersecurity.com/post/2015/10/Malware-Sakula-Evolutions-(Part-2/2)
https://labs.nccgroup.trust/mice
https://labs.nccgroup.trust/

nccgroup®

Sakula DLL planting analysis freedom from doubt

9 Signatures

The following signatures can be used to detect the various stages of this malware.

Please note these may have been formatted for readability - the signatures are provided in a separate file.

rule malware_sakula_xorloop {

meta:
description = "XOR loops from Sakula malware"
author = "David Cannings"
mdS = "fc6497fe708dbda9355139721b6181e7"
strings:
$mz = "MZ"

// XOR decode loop (non-null, non-key byte only)
$opcodes_decode_loop@1 =
{ 31 Co 8A 94 0B 3C 00 74 ©9 38 DO 74 05 30 DO 88 04 OB }

// XOR decode
$opcodes_decode_loop@2 =
{ 8B 45 08 8D OC 92 8A @1 84 CQO 74 @8 3C ?? 74 04 34 ?? 88 01 }

condition:
$mz at @ and any of ($opcodesx)
}
rule malware_sakula_memory {
meta:
description = "Sakula malware - strings after unpacking (memory rule)"
author = "David Cannings"
mdS = "b3852b9eTf2b8954be447121bb6b65c3"
strings:
$strol = "cmd.exe /c ping 127.0.0.1 & del \"%s\""
$stro2 = "cmd.exe /c rundll32 \"%s\" Play \"%s\""
$str03 = "Mozilla/4.0+(compatible;+MSIE+8.0;+Windows+NT+5.1;+SV1)"
$stre4 = "cmd.exe /c cmd.exe /c cmd.exe /c cmd.exe /c cmd.exe /c cmd.exe /c \"%s\"
$str@5 = "Self Process Id:%d"
$stro6 = "%d_%d_%d_%s"
$str@7 = "Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0;

SLCC
PC 6.0)"
$stre8 = "cmd.exe /c rundl132 \"%s\" ActiveQvaw \"%s\""

n

; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center

// Encode loop, operations: rol 1; xor ?7?;
$opcodesdl = { 83 F9 00 74 OE 31 CO 8A 03 DO CoO 34 ?? 88 ©3 49 43 EB ED }

// Encode loop, single byte XOR
$opcodesd2 = { 31 Co 8A 04 13 32 01 83 F8 00 75 OE 83 FA 00 74 04 49 4A }

condition:

4 of them

v1.1

TLP WHITE

21

Sakula DLL planting analysis

rule malware_sakula_shellcode {

nccgroup”

freedom from doubt

meta:
description = "Sakula shellcode - taken from decoded setup.msi but may not be unique
enough to identify Sakula"
author = "David Cannings"
strings:
/%
55 push ebp
89 E5 mov ebp, esp
E8 00 00 00 00 call $+5
58 pop eax
83 CoO 06 add eax, 6
C9o leave
C3 retn
*/

// Get EIP technique (may not be unique enough to identify Sakula)
// Note this only appears in memory or decoded files
$opcodesdl = { 55 89 E5 E8 00 00 00 00 58 83 CO 06 C9 C3 }

/%
8B 5E 3C
8B 5C 1E 78
8B 4C 1E 20
53
8B 5C 1E 24
01 F3
*/
// Export parser

mov
mov
mov
push
mov
add

ebx, [esi+3Ch] ; Offset to PE header

ebx, [esi+ebx+78h] ; Length of headers

ecx, [esi+ebx+20h] ; Number of data directories
ebx

ebx, [esi+ebx+24h] ; Export table

ebx, esi

$opcodesd2 = { 8B 5E 3C 8B 5C 1E 78 8B 4C 1E 20 53 8B 5C 1E 24 01 F3 }

condition:

v1.1

any of them

TLP WHITE

22

nccgroup®

Sakula DLL planting analysis freedom from doubt

10 Curiosities

10.1 Signingonmsi.dll

Inside the dropper not all of msi.d11 is encoded. Toward the end of the embedded file a code signing table is visible, which
uses a known stolen certificate from DTOPTOOLZ (serial 47D5D5372BCB1562B4COF4C2BDF13587).

00011690: 2556 6572 6953 6967 6e20 436c 6173 7320 %VeriSign Class

000116a0: 3320 436f 6465 2053 6967 6e69 6e67 2032 3 Code Signing 2
000116b0: 3031 3020 4341 301e 170d 3133 3038 3238 010 CAQ...130828
000116c0: 3030 3030 3030 5al17 ©d31 3430 3932 3732 00VVVVQZ..1409272
000116d0: 3335 3935 395a 3081 cb31 ©b30 @906 ©355 359597Z0..1.0...U
000116e0: 0406 1302 4b52 310e 300c 0603 5504 ©813KR1.0...U...
000116f0: 0553 454f 554c 3110 300e 0603 5504 ©713 .SEOUL1.0...U...
00011700: @74d 6170 6f2d 6775 311b 3019 0603 5504 .Mapo-gul.Q...U.
00011710: Qal4d 1244 544f 5054 4f4f 4cda 2043 6f2e ...DTOPTOOLZ Co.
00011720: 2c4c 7464 2e31 3e30 3c06 0355 040b 1335 ,Ltd.1>0<..U...5
00011730: 4469 6769 T461 6c20 4944 2043 6¢61 7373 Digital ID Class
00011740: 2033 202d 204d 6963 726f 736f 6674 2053 3 - Microsoft S
00011750: 6f66 T4TT 6172 6520 5661 6c69 6461 7469 oftware Validati
00011760: 6fbe 2076 3231 2030 1e06 0355 040b 1417 on v21 O...U....
00011770: 4d61 6eb1 6765 6d65 6eT4 2053 7570 T7T06f Management Suppo
00011780: T274 2054 6561 6d31 1b30 1906 0355 0403 rt Teaml.O...U..
00011790: 1412 4454 4150 544f 4f4c 5a20 436f 2e2c ..DTOPTOOLZ Co.,
00011T7a0: 4cT74 642e 3082 0122 300d 0609 2a86 4886 Ltd.0.."0...x.H.

. skipped ..

000122b0: 060a 2b06 0104 0182 3702 010c 313a 3038 . .+..... 7...1:08
000122c0: ad36 8034 0041 0064 VOO V62 P65 VP20 .6.4.A.d.o.b.e.

000122d0: 0052 065 V61 0064 Q65 Q72 020 P58 .R.e.a.d.e.r. .X
000122e0: 0049 0020 050 0044 0046 0020 Q56 V69 .I. .P.D.F. .V.i
000122f0: Q65 OOTT QOGS V72 300d 0609 2a86 4886 .e.w.e.r@...x.H.

When the dropper decodes the DLL this portion is actually XOR encoded and is not visible inmsi.d11 on disk.

Inspecting the PE headers of the dumped binary shows that Certificate Table entry is empty, as shown in figure 4 (note that
LordPE labels it “Security”).

Therefore it appears the malware author appended an authenticode signature manually but did not update the headers. A PE
editor can be used to “fix” this value to offset A@3, length ED8.

However as expected this results in an invalid signature, shown in figure 6. This is not surprising - but as the malware author
apparently had access to the stolen certificate it is unusual the DLL was not code signed correctly.

v1.1 TLP WHITE 23

Sakula DLL planting analysis

v1.1

nccgroup”

’
[Directory Table]

— Directory Information
R, Size

E xportT able: 00000000 | oooo00od | | L H
Import T able: 00003044 | oooooozC | | L H
Resource: Qoo0aooa Qoooaooa |_IL i
E xception: 00000000 | 00000000 LlH
Security: Q0000000 0000000 'H
Relacatiar: 00004000 | 00000038 .| L H
Debug: 00000000 | 00000000 | | L] H
Capyright: oooooooo | oooooooo | | L H
Globalptr: 00000000 | 00000000

TIsT able: oooooo00 | oooooo00 | | L | H|
LoadConfig: 00000000 | 00000000 L|H
Eoundlmpart: oooooooo | oooooood | | L H
AT 00003020 | 00000034 H]
Delaylmpart; oooooooo | ooopooood | L H
COM: | oooooooo | oooooooo .. L H]
Reserved: | 00000000 | 00000000

]

Save

i

Figure 4: Missing Certificate Table entry frommsi.dll

TLP WHITE

freedom from doubt

24

Sakula DLL planting analysis

nccgroup”

freedom from doubt

%) [LordPE Deluxe] by yoda

= @ %=]

[Directory Table] -
— Directory Information
Fivis Size ok |

ExportT able: Q0000000 Qoo0oeaa | .. || LjH
Irmport T able: 00003044 000ooo3c | . L | H
Fesource: Q0000000 EIEIDEIEIDEIEI| N
E=ception: 00000000 | 0000000 L|H
Securiby: 0ooooans | 000OOEDS H
Relocation: 00004000 EIEIEIEIEIDSEl H
Debug: 00000000 | ooo0oo00 | | L H
Copyright: 00000000 | 00000000 | L[H
Globalptr: 00000000 | 0000000
TIsT able: oooooood | oooooooa | | L H]
LoadConfig: 00000000 | 0000000 H
Boundlmpart: Q00000800 EIEIEIEIEIDEIEI| H
IAT: 00003080 | 00000034 E
Delapimpart: Qo0aooao Qo0aooao H
COM: 00000000 | 00000000 | .. | L |
Rezerved: 00000000 I 00000000

PE Editar
Ereak & Enter
R ebuild PE
Unzplit

Dumnper Server

ot Wikl

Options

Abaout
E wit

Figure 5: LordPE being used to edit the Certificate Table entry

TLP WHITE

Sakula DLL planting analysis

v1.1

nccgroup®

freedom from doubt

-

Digital Signature Details M

General | Advanced

—_. Digital Signature Information
This digital signature is not valid.

Signer information

Name: [DTOPTOOLZ Co. Ltd.|
E-miail: INut available
Signing time: INut available
View Certificate
Countersignatures
Mame of signer: E-mail address: Timestamp

Figure 6: Invalid signature on msi.dll

TLP WHITE

-

26

6.
NCCQroup
Sakula DLL planting analysis fieedorn from doubt
10.2 GetCursorPos structure clearing

The assembly code which sets the X and Y values to 0 may look unusual at first. The original C would have been something
like:

POINT p;
p.x =0;
p.y = 0;

BOOL bResult = GetCursorPos(&p);

The X value is set to 0 like below:

.text:004011FE and [esp+44Ch+0riginalMouselocation.x], @ ; Set X position to ©

But the Y value is set with a different set of instructions:

.text:00401211 Xor eax, eax
.text:00401213 lea edi, [esp+458h+0OriginalMouselocation.y]
.text:00401217 stosd ; Set Y position to @

Is this some nefarious technique, hand coded in assembly language? In this case: probably no. This code was likely generated
by an optimising compiler, which has been very smart at emitting two different methods of setting the memory locations to 0.

A modern superscalar processor will have different execution units for different types of operation, which may allow the above
to run in parallel (e.g. at almost the same time, rather than sequentially).

v1.1 TLP WHITE 27

nccgroup®

Sakula DLL planting analysis freedom from doubt

11 Similar files

11.1 Sakula

These files install Sakula and are directly related to the dropper analysed in this document.

SHA256 First VT upload

3051c3dc2bf03846¢c2a635d684a7bffd9b758655dab99ae f7ce9b2e 7708550 31 Jul 2014 (#1)
32a6541 feb8a679b44c85¢c3b9d01beb52b2176ccf87d77213f8d6f5bbfc3de3cf 07 Aug 2014 (#2)
9b0669d2478£4c5d6851b79b9bT70621141dfaba®858934a59add578f656ee7b2 19 Aug 2014 (#3)
45f8eb1c1c6d15c9bee304fb02fafbcdbbc@f44b5953b8ddb084126805da12488 24 Mar 2015
40e8252887fae302d5c972630127e8b14bcad@4ddal49eebad9c02afab5574a1 01 Apr 2015
eT720936f1d76f£353de563508df0fc1e38fel4efbe8ec2ff7918220d8e56b3fe 02 Jul 2015
db8867508b131a2c66873a1c70ad5cc82102576227a17aebdf42£72606d84b535 25 Apr 2016

Note 1 - this was named CACI Juniper SSL VPN ActiveX.exe and is signed with the stolen DTOPTOOLZ certificate.
It looks like a fake installer and opens the victim’s browser to the CACI Portal (portal .caci.com).

Note 2 - this looks like an Adobe Reader installer and is signed with the stolen DTOPTOOLZ certificate.

Note 3-ThisisnamedSecurity Mail Exchange ActiveX Control.exe andis signed with the stolen DTOPTOOLZ
certificate. It is another fake installer targeted at the Mongolian cabinet (cabinet .gov.mn).

11.2 Other

These files also use the vulnerable Kaspersky executable and can be placed into three distinct groups.

SHA256 First seen (VT) Group

8cTcbecff2bfadaddo7327££d527bab192993cc6a2d86b2c@25795f7a7b333803 06 Jun 2014
679e4f1b7d8e1716bfb@9890a5bbe44982bec59704039d497d3940a89d316¢cd4 14 Jul 2014
d5c f2e4d854e4eT703f6ea062a703d762c78f9d4deeccaded15f94e7£525e162f 14 Jul 2014
fcd763359955e fc5d11aelac7821b6ad188fe5f84ecafl3749¢7fb8db4dcc4933 14 Jul 2014
T75b82656485b6¢cT74cal3761500673cd147ff1de57e4681df5ac8c94ca9780c8b5 16 Jul 2014
dbfbab10b466af48ae040£17{3d0d3e8ad46d4fe8d3dab7ca39e1c@3515790e@ 16 Jul 2014
6bd20aebf171a4c1e638d34539726798d461¢c10223ed4f41400f53fb5a7374b9 16 Jul 2014
5da167bd29a0949bbTcfe441cab3430d4701ab8b0cd1362ba9d7be40c32d3270 23 Jul 2014
3fT7e841b76263619e810225df726151abd58304b103cfd1a4f@af17b3dd3e478 13 Aug 2014
c1e1149e2e83710bd19549e438325b92a3245760a15283ee207501 fea9387ble 13 Aug 2014
040eb2c639abbec1558d98e17251eb2769be9T7a87831cadb5477736480267724e 13 Aug 2014
818f5a903c08c 743015512 f02d9100573e9260e376d5741456735bf46a48c7a9 01 Sep 2014
e4a45e fde498c2eb3202b82dcde9a77e654c@2937742e9966cdbO7660dd30641 17 Oct 2014
9fc1a21fa6aal960c3 7559306257 £35a4879a7a049575¢c729694241343696¢ 24 Oct 2014
e4540d40affc52b199ec21a981 fa47bdc16f450e4ccaf4a80026fb7218e1cd9b 24 Oct 2014
7d37076bbT7{f1aff13d0f63fcb2c60c16b3b8166e7a5989d00b8b54e21203d56@ 25 Oct 2014
dofer2T7eT5ba9cd faabaab5a19952976a318be33d70601b02f1e86d5¢c fcc3d57 31 Oct 2014
abb578896fd688231eb6cc2ebb4dec fd1d56e1e372db3207efd9f45f4dac7cdadd® 11 Nov 2014
TcO686aa4eadbd9f6c1e8ffO80e1d0ce88£3052b4a8b1785a304b17e2fec534e®@ 21 Dec 2014
87fe748ffObfcOa@c3befeal3ccef164390f1edb46dc4128aaecebe®@b2f2a5ed3 26 Dec 2014

W W WWNWWWWWWWNDNDNDNNDNDDN-

v1.1 TLP WHITE 28

%
NCCQroup
Sakula DLL planting analysis freedom from doubt
11.21 Group 1 - PlugX

This single file uses msi.dyload as the payload. It is detected as PlugX by antivirus and msi.dl1 is a PlugX loader.
Displays the common “THIS IS A DEMO VERSION!!I" message.

11.2.2 Group 2 - PlugX

These files use msi.dl1l.mov as the payload. A large number of similar files were uploaded through 2014, all using the
vulnerable Kaspersky executable. Many are detected as PlugX by antivirus.

11.2.3 Group 3 - Maudi
These files use Maudi/ Poisonlvy as the payload (in flash. ini)and appear to be targeted at Mongolia. For more information
see the document The Chinese Malware Complexes: The Maudi Surveillance Operation'® from Bluecoat.

The dropper looks like a Word file and loads a decoy document after execution. Examples of the decoy contents are:

» Screenshots from the Twitter account @tsnyamaa.
* A memorandum of understanding between France and Mongolia defence ministries.

File names include:

* MNG-FRA MOU MNG after MFA revision+Paris ESYam revision.exe

* AH-MAXH nyyc geree.doc .exe

* noBepeHHOCTb . exe (“Power of attorney”)

[2014 IAL-KLRI International Conference] Registration Form.exe

Online locations the droppers were found at include:

» web.happymyanmar .net/hollywood/photo.exe

5https://www.bluecoat.com/documents/download/2c832f0f-45d2-4145-bdb7-70fc78c22b0f

v1.1 TLP WHITE 29

https://www.bluecoat.com/documents/download/2c832f0f-45d2-4145-bdb7-70fc78c22b0f

nccgroup”

Sakula DLL planting analysis fieedorn from doubt

12 Useful breakpoints

The following list of breakpoints are given to enable analysis of the executable in WinDbg.

12.1 Kaspersky executable

* Insecure call to LoadLibrary that triggers load of alternate msi.dll: bp setup+1474

12.2 msi.dll

* Break onload: sxe 1d msi

» XOR decode routine: bp msi+1000
* Entry point: bp msi+1031

» Call to XOR decode: bp msi+1167
* Call to shellcode: bp msi+116f

12.3 Shellcode

Because the shellcode is dynamically loaded in memory the base address of each memory region may change between runs.
It is possible to assign the base address to a variable:

* Break after VirtualAlloc: bp msi+1133
+ Save returned base address: r @$t@ = eax
* Run until after code is loaded: bp msi+116f; g

Now breakpoints can be added which are relative to this base address:

+ Break on shellcode entry: bp @$t0

« Position independence trick: bp @$t0+8ED
+ Shellcode import resolver: bp @$t0+236

+ Embedded PE loader: bp @$t0+2B2

+ Before calling executable: bp @$t0+3D1

Note that if you attempt to set breakpoints before the code is loaded WinDbg will not add them correctly. Hardware (on access)
breakpoints could be used if desired (see WinDbg help for command ba) but there are a limited number available.

v1.1 TLP WHITE 30

nccgroup®

Sakula DLL planting analysis fieedorn frorn doubt

13 Changes

» 2016-07-10: v1.0 released publicly.
» 2016-07-14: v1.1 released with clarified information in section 6.3.1 (credit Marc Ochsenmeier).

14 Contact details

To contact the author with questions, suggestions or corrections please use the email address david.cannings@nccgroup.trust.

For all other queries about NCC Group please email response@nccgroup.trust who will direct your query appropriately.

v1.1 TLP WHITE 31

	Handling information
	Introduction
	Analysed sample
	Thanks

	Understanding the chain of execution
	Overview

	Dropper executable
	Identifying the XOR encoding function
	Extracting the files
	Extracting & decoding the files
	Embedded files
	Anti-sandbox checks
	Self deletion

	s.exe / MediaSoft.exe (Kaspersky installer)
	Overview
	Vulnerable code
	Authenticode signature

	msi.dll (planted DLL)
	String obfuscation
	Decode and call to shellcode
	Breaking on load
	Using WinDbg
	Verifying the module has loaded
	Examining how DllEntryPoint() is called

	Decoding setup.msi
	Breaking before decode
	Inspecting shellcode memory permissions
	Examining memory - before decode
	Examining memory - after decode
	Dumping shellcode memory region

	setup.msi (injected shellcode & implant)
	Overview
	Locating kernel32
	Position independence trick
	Import resolution

	Embedded implant
	The implant
	Decoding configuration

	Signatures
	Curiosities
	Signing on msi.dll
	GetCursorPos structure clearing

	Similar files
	Sakula
	Other
	Group 1 - PlugX
	Group 2 - PlugX
	Group 3 - Maudi

	Useful breakpoints
	Kaspersky executable
	msi.dll
	Shellcode

	Changes
	Contact details

